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This paper is concerned with the development of methods for constructing stable artificial 
boundary conditions for wavelike equations in a general and automatic way. The one-dimen- 
sional problem of a semi-infinite, inhomogeneous, elastic bar is studied here as a prototype 
situation. For this problem a family of efficient artificial boundary conditions is obtained using 
geometrical optics in the Laplace transform domain for generating outgoing solutions, 
together with a stability criterion based on energy integrals to insure that the resulting 
artiticial boundaries are dissipative. Numerical examples illustrate the efficacy of this 
approach. The paper also includes some remarks about the extension of the proposed method 
to a more general two-dimensional situation. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The method of artificial boundaries is a device to obtain approximate solutions 
of differential equation problems in infinite domains. It involves introducing an 
artificial boundary and giving approximate boundary conditions. Then one can 
solve a problem in a finite domain. 

The method has been used by many authors (see, e.g., the survey by 
Turkel [ 11 ] ). Our ideas were influenced particularly by the systematic and 
ingenious work of Engquist and Majda [4] and [S]. They gave a very complete 
discussion of the exterior problem for the wave equation in a half-space. This 
problem had the advantage that much of the work could be done with explicit 
formulas. We had some difficulty, however, in understanding how the method 
would work in more general situations. To aid us in this respect, we undertook a 
study of the one-dimensional problem of a semi-infinite, inhomogeneous, elastic 
bar. We report our observations here. 

Our first step was to use geometrical optics ideas in the Laplace transform 
domain to develop a sequence of approximate problems. This seems to provide a 
straightforward and systematic procedure for doing the pseudodifferential operator 
factoring of [4] and [S], and generating outgoing solutions. Related ideas appear 
in [7-91. 

1 This work was supported by the National Science Foundation under Grants ECE-86/1060 (J.B., 
A.B.) and DMS 8601288 (R.C.M.). 
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The approximate problems can be solved easily with finite element methods. 
When we implemented them, however, we observed exponential error growth. This 
is to be anticipated from the work of [4] and [S], since our artificial conditions 
violate the well-posedness criterion given there. Thus one must somehow modify 
the artificial conditions. 

In order to produce stable solutions we developed a criterion for stability that 
makes use of energy integrals, and is thus fairly general. Finally, we obtained a very 
simple modification of our approximate conditions which satisfies our criterion for 
stability. These modified conditions, which are as easy to implement as our original 
ones, produced a dramatic improvement in accuracy. Numerical examples are given 
in Section 4 to illustrate this effect. 

We believe that the above ideas have considerable generality. As an illustration, 
in Section 5 we make some remarks on the much more difficult case of two-dimen- 
sional problems. In particular, we consider the exterior wave equation problem. We 
follow the same sequence of steps: geometrical optics expansion in the transform 
domain and development of a stability criterion via energy integrals. We are able 
to treat the problem of a general convex artificial boundary in a systematic way but 
we encounter the difficulty that the approximate problems do not satisfy our 
stability criterion. Again, this is anticipated by the work of [4] and [S]. For the 
half-space problem this difficulty was overcome in [4] and [S] by a clever use of 
Padi: aproximations. We do not see, however, how to extend the Pad& approach to 
the general case. 

For the general case we propose a modified condition that we hope will partially 
overcome the stability problem. We also indicate in Section 5 ,a connection between 
our work and that of Bayliss and Turkel [Z] when we choose our two-dimensional 
boundary to be a circle. 

Our main goal was to obtain methods for construction of artificial boundary 
conditions and stability criteria which are both general and automatic. We feel that 
the geometrical optics and energy integral arguments are vehicles to this end. 

2. ANALYSIS OF THE BAR PROBLEM 

We treat the problem of a semi-infinite elastic bar, of uniform cross section, 
under impact. The bar is inhomogeneous in the axial direction and the motion is 
assumed to be purely longitudinal. 

Let x denote position of the cross sections in the unstretched configuration and 
let u(x, t), p(x), and p(x) denote displacement, density, and elastic modulus. The 
stress (T(x, t) = p(x) u,(x, t) and the mathematical problem, which we denote by 
(PI, is 

P(X) %,(X9 t) = ~A% t) = (P(X) 4(x, t)),, x > 0, t>o; 
4 t) = l-40) u,(O, t) = $(t), t >o; (2.1) 

24(x, 0) f u,(x, 0) E 0, x>o 
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We assume that the bar is eventually homogeneous, that is, 

and we require the solution to be outgoing, that is, 

44 t) = PoU,(X, t) = - &zl %(X2 t) for x2x. (2.2) 

It would be quite straightforward to solve (P) on (0, X), with condition (2.2) at 
x=X, by finite element or finite difference methods. If X is large, however, this 
would lead to large systems of algebraic equations. Further, one may be interested 
in u only for values of x close to zero. Thus the question arises as to whether one 
can solve (P) over a shorter interval (0, L) with some approximate boundary 
condition at x = L. 

We begin our analysis by Laplace transforming (2.1) with respect to time. T 
yields the problem 

ps*m, s) = (P(X) kb, s)),, x > 0, 

6(0, s) = p(0) ti,(O, s) = l&s). 
(2.3) 

The outgoing condition (2.2) requires that zi satisfy 

3% 3) = PO&(X, s) = -&z SW, $1, x 3 x. 

Suppose that 8(x, s) is a solution of the problem 

PS2& s) = (P(X) mx, s)),, X>L, 

ii(L, s) = 1, PO R(x, $1 = - -.&z 4x, 31, x 3 x. 

Then one has ti(x, s) = li(L, s) 6(x, s) on x 3 L. Hence we have 

8(Ls s) = p(L) li,(L, s) = p(L) O’,(L, s) ti(L, s) = zqs) fi(L, s). 02.61 

Equation (2.6) represents an exact boundary condition satisfied by the so~~ti~~ 
of (2.3). Translated back into the time domain it gives 

o(L, t) = F(u’(L, .)), (2.7) 

where U’ represents the history, u’(L, t) = u(L, t - 7). If one solved the problem 

Put, = hwJ,~ 24(x, 0) = ut(x, 0) = 0, O<x<L, 

40, t) = et), o(L, t) = F(u’(L, .)), 
(2.8) 

one would have the exact solution of (2.1) on (0, L). 
The quantity @ and hence the operator 9 is hard to compute. Even if it were 

known condition (2.7) would cause numerical difficulty since it is non-local in time 



452 BARRY, BIELAK, AND MAC CAMY 

Our goal is to obtain approximations to A@, hence 8, which are easier to use. SF 
is a pseudodifferential operator and it is the operator R(t) in [7, Sect. 41. It is 
indicated in [7] that one can approximate R(t) for highly oscillatory functions by 
analyzing its transform for large s. The same approach is suggested by the work of 
[S]. We will carry out this approach in a systematic fashion by using ideas from 
geometrical optics (see, e.g., [3]). 

Our procedure is to seek an asymptotic expansion for the function 0 in (2.5) for 
large S. This expansion has the form 

qx, s) N e-s)(x) m k;. U,(x) S-kY 
d(L)=09 U,(L) = 1, u,(L) = 0, ka 1. 

(2.9) 

We substitute (2.9) into (2.5) and equate coefficients of smk. This yields, first, the 
equation 

d’(x) = JP(XYPL(X). (2.10) 

The Uk)s are then determined recursively. If we put p(x) = dm then 

2pu; + j3’Uo = 0, 2fiu;,+,??u,=(,-@-,)‘, k> 1. (2.11) 

We obtain an expansion for g(s) by differentiating (2.9) and setting x= L to 
obtain 

= ,z-, Mks-k. (2.12) 

The coefficients ak are computed from (2.11) at x = L and are determined by p 
and ,U and their derivatives at x = L. We record the first three coefficients in the case 
p(x) SE 1, which was that used in our numerical experiments: 

(2.13) 

One can obtain approximate boundary conditions by truncating the series (2.12). 
Thus we define &h(s) by the formulas 

(2.14) 
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and replace condition (2.6) by B(L, s) = &h(s) ti(L, s). We note that if am = 
((k- I)!)-’ tk-1, k= 1, 2, . ..) then @(s) = s-~. Thus (2.14) corresponds in the time 
domain to the approximate boundary conditions 

a(L,, t)=*J$(u’(L, .))=g-,u,(L, t)+a,z& t>+ 2 ak(qlk*utL, .))(t) 
k=l 

(2.15) 

where (*) denotes convolution. We note that the integrals can be eliminated. There 
are polynomials P,,+(z) and Q,,,(Z) such that (2.15) is the same as 

For N = - 1, 0, 1 we have, respectively, 

(2.17a) 

(2.17c) 

Remarks. (1) If p and p were constants p0 and p0 series (2.9) would reduce to 
a single term 0(x, s) = e-‘ICx), $(x)=&(x-L) and then xM1 = -Go, 
ak = 0 for k > 0. Thus the g/s are all equal to the exact &. 

(2) Suppose one truncates series (2.9) at k = N to obtain functions @“(x, s). 
It is easy to verify that these solve the problems 

Ps2~N(X, s)= (P(X) wx, s)) +f”(x, s), 
UN(L, s) = 1, PO X(X> s) = - Jiz sUN(x, s), x 3 x, 

where fN(x, s)= O(sPN). From this it is possible to show that (2.9) is indeed an 
asymptotic expansion in the sense that 8- ON= O(seN-‘) for large s. The same 
is true for the approximate & in (2.14). 

(3) It is of interest to note that one can also obtain an expansion for 8(s) 
and hence @(s) for small s. Thus one could take 

0(x, s) = f Jfk(x) sk, 
k=O 

If one substitutes into (2.5) one obtains 

(218) 

(2.19) 
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It follows that for small s g(s) has an expansion 

9(s) = f p7&sk, B1= --Jpol*o. (2.20) 
k=l 

Note in particular that g(O) =O. From (2.20) one can obtain a diffeent set of 
approximate boundary conditions corresponding to Z@/(s) = Cf= I Pksk, that is, 

(2.21) 

We have not studied condition (2.21) numerically. 
Let us return to conditions (2.16). The problems (Ph) which one would solve 

numerically are 

Put, = L%Jx> 24(x, 0) = u&x, 0) = 0, O<x<L, 

40, t) = $(t), P,(D) a t) = QN(~) 4% t). 
(2.22) 

Our numerical procedure, as described in Section 4, is a mixed finite element 
variational method, with U(X, t) and a(L, t) as variables. Conditions (2.16) are easy 
to implement within this framewcrk and we feel the method extends to other 
situations more easily than finite differences. 

The hope is that if one solves (2.22) for uN then uN will approximate the solution 
u of (2.1) on (0, L) with increasing accuracy as N increases. (For a fixed N the 
accuracy should increase as L increases, with the solution becoming exact as 
L +X.) The results of some numerical experiments are presented in Section 4. We 
found that the cases N= - 1 and 0 work fairly well, even for small L, with N = 0, 
in general, better than N = - 1. For N= 1, however, we observed errors which grow 
rapidly as t increases. We want to discuss this now and provide a modification 
which reduces the errors. 

It has been observed in studying artilicial boundary conditions that one must be 
careful that these conditions do not produce ill-posed problems. The criterion used 
in [4] and [S] for acceptable approximate conditions is that of Kreiss [lo]. In the 
simple situation we are considering it amounts to the following. Consider the equa- 
tion p(L) u,, = p(L) u,. Then a boundary condition at x = L is well posed in the 
sense of Kreiss if there is no solution U(X, t) = esx+af, satisfying that condition, for 
9e s>O. One verifies immediately that this will be true for boundary condition 
(2.17) if and only if the constants a_,, txO, and CI~ are all negative. In our 
experiments we chose a p which is monotone increasing but concave. Thus we see 
from (2.13) that a_,<Oand a,<0 but a,>O. Thus our condition (2.17c)for N=l 
is ill posed according to the Kreiss criterion. 

We introduce a more restrictive stability criterion for the approximate condition 
at x = L. We term this dissipativity. The goal is to prevent exponential error growth 
with time. Our condition appears naturally from energy integral arguments, is 
satisfied by the exact operator 9 of (2.7), and is easy to check. 
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Let Y denote a history operator of the type considered above and let 9 denote 
its Laplace transform. We consider the problem P(Y”, $, x), 

and its transform @(9, I,$, i), 

ps*fi = (k&J,, O<x<L, 

w, s) = $(s,, CqL, s) = p(L) li,(L, s) = P(s) G(L, s) + i. 
(2.24) 

I)EFINITION. Y is dissipative if @(pi, 0, 0) has no non-zero solutions for s f 0, 
We Sg=O. 

Remark 4. Observe that if Y(0) is zero then for s = 0 (2.24) will have constant 
solutions for f E 0. We observed above that the & in (2.6) is zero when s = 0; thus 
we have excluded s = 0 in the definition of dissipativity. 

Let us indicate the implications of this condition. Suppose that the data $ 
x are such that their transforms I,$, f are analytic in 9e ~30. Then one has 
following results: 

(i) If Y is dissipative the solution ii of P(p’, 4, f) will exist and 
continuous in We s Z 0, s # 0, and analytic in We s > 0. 

(ii) If 9 is not dissipative then the solution ii of 9($‘, $, f) will (in general) 
have poles in Be s > 0. 

One recovers u by taking the inverse transform of ti. Thus if Y is not dissipative 
(ii) implies that u will usually grow exponentially with time. If Y is dissipative (i) 
implies this cannot happen and, in general, one would expect u to remain bounded 
as t tends to infinity. 

We will show that 9 in (2.7) is dissipative. Suppose we can find an approximat- 
ing operator 8’ which is also dissipative. Let u be the exact solution of (2.1)9 that 
is, 9’(5, $I, 0) and let v be the solution of the approximating problem P(F’, li/, 
Then the error w = u - u will be a solution of S(.F’, 0, x) with x(l) = 
F[u”(L, a)] - B’[u’(L, .)I. Thus the dissipativity of F’ will prevent exponential 
error growth. 

We give sufficient conditions for dissipativity. 

PROPOSITION 1. Y is dissipative $9 satisfies the two conditions 

LP(s),<O for any s= 5, 5 >O, 

<o 
9mp(5+ir) ,. for any 5 +irj with r&O and 

4>0, 
r/ < 0. 

m 
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ProojY Let u be a solution of B(Y, 0,O) so that 2; is a solution of @(p, 0,O). 
Then from (2.24) we have 

o=s2 JLp(x)IC(x, s)i2dx+~oL~(X)IB,(x,s)12dx-~(s)lli(L,s)12. (2.25) 
0 

For s = 5 > 0 (2.25) and (8) imply fi(x, s) E 0. For s = 5 + iv, i: > 0, q # 0. For s = iv, 
q # 0, we take the imaginary part of (2.25) and use (I) to conclude ti(L, S) = 0. 
But then we have also ti,(L, S) = 9(s) ti(L, S) = 0 and hence fi(x, S) = 0 by unique 
continuation. 

We use (8) and (1) to show that 9 in (2.7) is dissipative. 

PROPOSITION 2. The operator 9 in (2.7) is dissipative. 

ProoJ: From (2.5) we have (@L, S)= l), 

o=s2 j’ p(x)1 0(x, 41’ dx + j-; &)I &(x, 41’ dx 
L 

+ J&ii s I Q, $)I’+ @$)I w, $11’. (2.26) 

We note that 0(X, s) cannot be zero. If it were we would have fi,.(Z, s) = 0 also and, 
as above, 0(x, s) E 0. Then for s = 5 > 0 (I?) follows from (2.26) and, for s = 5 + iv, 
l> 0, q # 0 (I) follows by taking the imaginary part of (2:26). 

Let us consider our approximate operator 9:(s) = a-is + a, + CQS-’ and 
suppose a-, < 0 and a, < 0. Then if E, > 0 (I%) will be violated. (Recall this is the 
case we studied numerically.) If c1r were negative we would violate (T) thus with 
a _ 1 < 0 and CI~ < 0 our 9”I; could never be dissipative. 

We observed that one can satisfy both (R) and (I) with a simple modification of 
9;; namely, one takes 

~~(s)=a~,s+ci,+a,(s+6)-‘. (2.27) 

For any 6 g(s) will agree with @l(s) to order sm2 for large S. With CI _ 1 < 0 and 
a,<0 we see that when a, > 0 9i is dissipative if 6 > -c~ija~ while if CI~ <0 it is 
dissipative for 6 > (al/a _ 1)1’2. 

When we use the revised operator Fr the problem (Pi) in (2.22) is replaced by 
problem (Pr): 

Putt = h%Jx~ 24(x, 0) = z&(x, 0) = 0, O<x<L, 

d,(L, t)+&(L, t)=Cl-lU,,(L, t)+(a,+a-,G)u)(L, t) (2.28) 

+ (cc1 + a,6) u(L, t). 
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This problem is as easy to implement numerically as (I’;) and, as we show in 
Section 4, it produces dramatically reduced errors. 

Remarks. (5) The modification (2.27) appears to be related to one suggested in 
Eq. (3.13) of [9] but the relation is not clear. 

(6) Our modification can be extended to the higher order operators LP~, 
namely, one can introduce &, defined by 

$&)=a-,s+a,+ 2 a,,,(s+d,,Jk. 
k=l 

(2.29) 

One can choose the constants c(~,,, and 6,,, so that &,, agrees with &A up to order 
s -N-1 while gN is dissipative. (This is again similar to Ref. [9].) Condition (2.29) 
translated back to the time domain again yields problems like (2.23). Some 
preliminary calculations for N = 2 indicated a slight improvement but also exhibited 
some numerical instabilities due to the higher order time derivatives. Thus it is not 
clear that it would be desirable to use higher order approximations. 

(7) Our approximate boundary conditions have an interesting mechanical 
interpretation. Condition (2.17a) could be realized by attaching a dashpot of 
constant -01-i to the end x = L of a finite bar. Condition (2.17b) is the same as 
attaching a dashpot, with constant --c~-i, and a spring, with constant -Q, in 
parallel. The modified condition in (2.28) could be realized by the arrangement of 
springs and dashpots indicated in Fig. 1. 

It can be checked that this yields the desired condition, for a given 6 > 0, 
provided we choose the spring constants ki and dashpot constants ci by 

co= --N-l, k, = 44 k,= -a,-a,/6, cl = k,/6. (230) 

We assume, as in our numerical example, that a_, < 0, 0~~ < 0, and a, > 0. Thus the 
system is physically realizable (all constants positive) precisely when 6 > a,/- a,, 
which is our stability condition. We note that for the unmodified condition 
(2.17c), for N= 1, it is not possible to have a physically realizable equivalent 
spring-dashpot system. 

ko 

FIG. 1. Mechanical representation of modified absorbing boundary condition in (2.28). 
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3. NUMERICAL IMPLEMENTATION 

We solved problems (2.22) and (2.28) by a variational procedure using finite 
elements. We illustrate with (2.28). If one puts r(t) = o(L, t) one has the following 
mixed variational form: Find u(x, t) and z(t) such that for ‘any differentiable v(x), 

s ,’ b(x) %rb, t) 4x) + Ax) FAX, t) ~‘(X)l h-$f) u(L) = -$(f) do), 

f(t) + h(t) = CI-lU,,(L, t) + K&(L, t) + JclU(L, t), (3.1) 

lcg=clO+a-,6, ?c1= c(1 + a,& 

We introduce the finite-dimensional spaces Sh spanned 
finite elements 92. Then we seek 

by the piecewise linear 

Uh(X, t) = 2 z&(t) c&(x) 
0 

which satisfy (3.1) for all v E Sh. The resulting spatially discretized problems can be 
reduced to the form 

Mii(t)+Ku(t)-z(t)e,= -IC/(t)eo, u(0) = li(0) = 0, 

~(t)+6z(t)=a-,ii,,+Ic,zi,,+rc,u,*, z(0) = 0. 
(3.2) 

For the time integration of (3.2), we used Newmark’s trapezoidal method [6]. At 
the time step (r + 1 ), (3.2) is written as 

(3.3) 

The displacements ur+l and velocities IV+’ are obtained as 

ur+l = li’$- Ii’ At + (iv + ii”‘)(Lq2/4, 

U .1+1=li’+(ii’+ii’+‘)dt/2. 
(3.4) 

For a prescribed r this algorithm is unconditionally stable [6]. The time 
integration of (3.2), is carried out by a backward difference scheme combined with 
averaging, 

(7 r+l 
+ f) = ol-l(ti&;1 - ti’,)/dt 

+ 7c,(uy$ l + u&J (3.5) 

Remark. The use of the mixed variational procedure, with p(L) u,(L, t) as an 
unknown eliminates the necessity for calculating the x derivative of u at x = L. This 
seems preferable to finite differences. 
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4. NUMERICAL RESULTS 

To illustrate the applicability of our procedure we consider a bar of constant 
density p = p0 = 1 and monotonically increasing elastic modulus: 

P(X)= 1 -Cl -14)ew-YX), x 2 8, Cd.11 

where ,~i = ~(0) and y > 0 is a constant. From (4.1) it follows that p,, is effectively 
unity, and thus, the velocity of wave propagation c0 = (,~,,/p~)“’ = I. 

We found that when we took the excitation $ to be such as to produce a 
short pulse, we obtained very little reflection from x = L with any of the boundary 
conditions. Therefore, we chose the excitation to have the form 

I/J(~) = sin(2nAt), 1> 0, (4.2) 

since this seems to us to yield a more severe test of the method. With this bar we 
perform a parametric study to examine the effect of various factors, including the 
type and position of the absorbing boundary, and frequency of excitation A, on the 
accuracy of the results. The behavior for different values of p1 and y was similar and 
only results for one combination, ,LL~ = 0.1, and y = 0.588, are reported here. T 
corresponding values of p, CI _ i, c(~, a,, and Bcrit = -CX~/Q for different positions 
the absorbing boundary are shown on Table I. Even when the value of CQ is very 
small we found it to be quite destabilizing if not corrected by the introduction of 

The solution within the domain of computation [0, L] is discretized wi 
uniform piecewise linear finite elements of length h = 0.01. Only one mesh size is 
used in all the calculations in order to avoid the error inherent in the finite element 
discretization in our comparisons. For the time integration the mass ma 
is chosen as the average of the lumped and consistent mass matrices. 
combination, which we have discovered satisfies the global balance law 

yields more accurate results than either the lumped or consistent mass matrix by 
itself [6]. In calculating the element stiffness matrix we take the average value of 

L 

TABLE I 

Valuesofp, a_l,a0,a,,6,,,vsL 

P a-1 a0 aI Lit, 

0.25 0.223 -0.472 -0.114 0.0297 0.260 
0.50 0.329 -0.574 - 0.099 0.0251 0.255 
1.00 0.500 -0.707 -0.074 0.0191 0.260 
8.00 0.992 -0.996 -0.001 0.0004 0.293 
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,U within each element. Even though no limitation need be imposed on the time step 
for stability, we have chosen At = 0.01, from accuracy considerations. This choice of 
h and At is based on a sensitivity study reported in [ 11. 

To measure the accuracy of the approximation we will regard as an “exact” 
solution, u:!, that obtained by placing the absorbing boundary at x = 8, for which 
c = WPP2 is sufficiently close to c0 that (2.2) can be used as the appropriate 
condition. In fact, numerical tests using (2.17a, b, c) and (2.28) at L = 8 agreed with 
each other within live significant figures, with the solutions for any x becoming 
periodic with frequency I, for large t. Keeping h and At fixed, the only difference 
between uh and U& within [0, L] then will be due to the error introduced by the 
approximate boundary condition at x = L. 

Figures 2 and 3 show the relative error in L, of the displacement, for different 
types and positions of the absorbing boundary, for two frequencies of excitation. 
This error is defined by 

Relative error = (uh - ukx)2 dnjli2max { ji.25 (u&)’ dx}1’2. (4.4) 

(Other quantities, such as the displacement at the bar end showed similar errors.) 

~~~ 
0 10 20 30 40 50 

0 10 20 30 40 50 

TIME 

FIG. 2. Relative error in L2 of displacement vs time, for I = 3, and three different types and positions 
of absorbing boundaries. - - -, (2.22), N= - 1; - - - -, (2.22), N= 0; - - -, (2.28). 
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1.0 
(c) L= .2s 

0.5 

0.0 
0 10 20 30 40 50 

lx 1.0 
r-l (b) L= ,501 

0 10 7.0 30 40 50 

1.0 . 
(c) L=l.OO 

0.5 - 

0 10 20 30 40 50 
TIME 

FIG. 3. Relative error in L, for displacement vs time, for I =O.l, and three different types and 
positions of absorbing boundaries. - - -, (2.22), N= - 1; - - - -, (2.22), N = 0; - - -, (2.28). 

The dotted-dashed and double dotteddashed lines in Figs. 2 and 3 represent the 
errors corresponding to (2.22) and for N = - 1,O respectively. Clearly, the two solu- 
tions coincide until the first reflection from x= L reaches x=0.25. While the two 
approximations introduce an error thereafter, this error remains stable over time. In 
contrast, the absolute error in L2 corresponding to (2.22) for N= 1 (or, equiv- 
alently, (2.28) with 6 = 0) with L = 0.25 and A = 3, exhibits a rapid growth with 
increasing time as shown by the solid line on Fig. 4. (The apparent reduction of the 
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FIG. 4. Absolute error in L, for displacement vs time, for the solution of (2.28) with i,= 3 and 
L=O.25; tl= 6/h,,,. 
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error just before it begins to grow steadily is a consequence of plotting the error in 
absolute value. The actual error becomes negative as t increases.) Figure 4 also 
shows that introducing (2.28) for increasing values of 6, as measured by 0 = 6/dcrit, 
produces a decreasing rate of error growth. However, only when 6 attains the value 
Scrit does the error become stable. Taking 6 > 6,,, also results in stable solutions of 
(2.28), but numerical experiments indicate that the accuracy deteriorates as 6 
increases. (Results similar to those shown on Fig. 4 were obtained also for 
L=O.5, 1; and for n=O.l.) 

The relative error in L2 corresponding to (2.28) with 6 = dcrit also is shown on 
Figs. 2 and 3, along with the results for (2.22) for N = - 1 and N = 0. The following 
trends are worthy of note in these figures: 

All three approximate problems (2.22), N= - 1, 0 and (2.28) give good results 
for small t, with (2.22), N = 0 showing some improvement over (2.22) with N = - 1. 
For large t the performance of (2.28) is markedly better than (2.22), N = - 1 or 0. 
This is so even when the interval (0, L) is quite short. For L = 0.25~ has increased 
only to 0.223, significantly less than its limit value ,u,, = 1. With this short interval 
the relative error for (2.28) is less than 2% for all t values considered. This 
remarkable result represents a full order of magnitude of improvement over the 
performance of (2.22), N = - l,O. (There may be other frequencies, however, for 
which the results become less accurate). 

5. REMARKS ON TWO-DIMENSIONAL PROBLEMS 

A two-dimensional version of the preceding problem occurs in the study of a 
special class of elastic waves (see [4]). We restrict ourselves here to homogeneous 
materials, which yields the two-dimensional wave equation. 

Let r be a closed curve in the plane with exterior Sz. We seek u(x, t) such that 

u,, = Au, XEQ, 

U” =f, XET, 

u(x, 0) E UJX, 0) = 0 

t > 0, 

t > 0 (v exterior normal), (5.1) 

in Q. 

The solution should be outgoing. 
We Laplace transform (5.1) in time and obtain 

s28= Ali, XEQ, i&=11; XET. (5.2) 

Let l-r be a closed convex curve containing r in its interior and let 52, be the 
exterior of rI (r, need not be a circle). We consider li in 52,. Let 0(x, s: t) be the 
solution of 

s21?= Au, XESZ,, U(X, S: t)=u(x, t), xdy (5.3) 
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Then one has 

22(x, s) = jam e -lj(x, s: t) dt, (5.4) 

Equation (5.5) represents an analog of formula (2.6). 03,(x, s, t)lr, will be a linear 
functional of u( ., t) on r,, 8,(x, s; t) = &[u( ., t)ir](x, s), hence (5.5) will yield 

Translation back to the time domain yields an analog of (2.7), 

The operator 9 in (5.7) is more complicated than that in (2.7). In (5.7) we 
spatial non-locality on r1 as well as the time non-locality. Our procedure is to 
expand & for large s thus in effect reducing the time non-locality. It turns out that 
this procedure automatically reduces the spatial non-locality on rl. 

Our expansion for 8 has the form 

d(x) =o, 

0(x, s: t) - eCs6@) m k;, Uk(x: t) S-k, (5.8) 

uyx: t) = 24(x, t), Uk(X, t) = 0, k>l, XEr1. 

We substitute (5.8) into (5.3) and equate coefficients of smk. This gives 

Igrad@j2= 1, 2gradd.grad U’+AqSL@=O, 

2grad$.grad Uk+AqSUk=AUkp’, k> 1. 

The calculations are facilitated by introducing a new coordinate system. Let gi 
be x = A’(A), A arc length, and let v(A) be the unit outer normal. Then the equation 
x = X(A) + TV(L), r > 0, yields a coordinate system. Since r1 is convex this is global 
in 52,. This coordinate system is orthogonal with form Q2(dL)“-t- (d~)~, 
Q=(l-UC(~)) h w ere K(L) is the curvature. For any scalar field x one has 

grad x = !- x~.X’(I) + xTv, 
Q 

(5.10) 
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Using (5.10) one finds that (5.9) yields q8 = r and 

zl/r”+~~=o, @=uIr, at z =O, 

e 21;:+6 Uk=AUk-I, uk=o at z =O. 

Some elementary calculations yield the results 

(5.11) 

We observe that d/dv = a/& and 4, = 1. Hence (5.8) yields 

mi-, - --suoIr,+ f u:Ij-,s-k (5.12) 
k=O 

and by (5.6), 

li,(x,s)~r~=~[cz;(.,s)](x,s)= -ssuI,,+ f (loa e-“li:,idr)s-*. (5.13) 
k=O 

We construct approximate functionals $ by truncating series (5.13) at IZ. This will 
give approximate boundary conditions to replace (5.6). Using (5.11) one can check 
that the first three are 

Notice that the n = - 1 and n =0 cases are completely local in space while the 
spatial non-locality in n = 1 is only the second tangential derivative. 

When the Kreiss well-posedness theory is applied to the present situation one 
considers the case of a half-space so that one can assume IC = 0. In this case all three 
of the conditions (5.14) give well-posed problems in the sense of Kreiss. Once again, 
however, there is a stronger dissipativity condition which would prevent exponen- 
tial error growth. We show that for a curve, IC # 0, the case n = 1 in (5.14) need not 
be dissipative. 
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The energy integral arguments of Section 2 can be repeated to yield the following 
results. We start with the analog of (2.24): 

s28 = Azi in Q,, 

ii,=0 on r, kli-,=%%-,I 
(5.15) 

where 4 is a spatial functional. The condition of dissipativity is again that (5.15) 
have no non-zero solutions in %?e s 2 0. There is also an analog of conditions ( 
and (I), namely, 

s ~M~)l(x, 5) 6(x, d1-c 0 for s= <>O, 
J-1 

4m s 
<o 

%NMx, 5: + iv) &-4 d;l >. for <>O, tl>Q 
0) 

r1 ?j <o. 

One can again show that the functional @ in (5.7) for the exact solution satisfies 
(8) and (I). Further R and 1 together imply that 99 is dissipative. Finally one can 
show that if one solves (5.1) for u aml the problem with the modified functional 3 
on r1 for U then u- U will remain bounded if 9 is dissipative but will grow 
exponentially if 9 is not dissipative. 

It is easily checked that the functionals 9-1 and 3?J satisfy (8) and (1) (K is 
negative). For n = 1 we have 

We see from (5.16) that F1 will satisfy (B) if the coefficient of s-l is negative. 
K #O this need not be true. We can, however, restore condition (ii), just as 
in Section 2, for a convex rl. Suppose 0 > E 3 K 2 5. Then if we introduce a new 
P1 by replacing s - ’ by (s + 6))’ for 6 > - G2/4g it is easy to verify that this new 
9; will satisfy (ii). This replaces the third condition in (5.14) by 

Condition (I) is different. It would be satisfied if the coefficient of 3-l in (5.16) 
were positive which is almost certainly not true. Moreover, it cannot be restored by 
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replacing s-r by (s + 6)-l since Jr, 14’ I2 dl cannot be dominated by Jr, I@ I2 d;l. 
We hope that good results will be obtained by choosing 6 to ensure (l?) above. If 
this is not so we do have a suggestion to deal with (I). Let us introduce this while 
simultaneously describing a proposed numerical scheme. 

Consider the problem of solving u,, = Au in the region Sz, between r and r1 with 
U, =f on r and (5.17) on rr. If we introduce z = U, IT, as an auxiliary variable then 
a variational formulation is to find (u, r) such that 

s u,,v dx + s Vu.Vvdx- 
a a2 

s TV d/i = 
r1 

s 
fv dJ., 

r  

jr, (7,+6z)pdA+ jr, h-(&-Vu, (5.18) 

-(($~~+$rcB)u)pd~+~ j uIp’dA=O, 
r1 

for all pairs (v, ,B). To implement this one could introduce the finite-dimensional 
spaces Sh and Ah on Q, and r1 and then find uh E Sh, rh E Ah so that (5.18) holds 
for any vh E Sh, ph E Ah. 

We have already indicated that 6 can be chosen so that (R) is satisfied. Our 
observation concerning (1) is that once the space Ah is fixed one can choose a 6 = dh 
so that condition (1) is satisfied for all cp EAT. Suppose, for instance, that Ah is 
chosen as the space of linear functions on r, with mesh size h. Thus if 
lj, j= 1, . . . . Nh, are parameter points, Ah = (c:, . . . . {:A) where [T are piecewise 
linear with [;(A,) = Sjk. Then q E Ah means q(A) = C;“” qjcj(A), q’(A) = C;“” qjjiJ(A). 
If we put qi = (‘pr , . . . . cp,~) then there is a positive definite matrix Jh and a non- 
negative matrix Lh such that for any cp E Ah 

s (~(1)~ d/i = (cp, J’W, s (~‘(1)~ dJ = (cp, Lhcp). 
r1 rl 

It follows that for some CI > 0 

jr, ~‘(4~ dA < II Lh II II cp II 2 G @ II Lh II jr1 (~~(4 di. (5.19) 

It is not difficult to show with this inequality that, for h fixed, then replacing s-r 
by (s + 6,))’ in the right side of (5.16) with 6, sufficiently large ensures that (f) is 
satisfied on Ah. This will at least guarantee that the solutions of (5.18) do not grow 
exponentially iffis suitably restricted. We note, however, that 11 L” II is of order hp2; 
hence the required 6h grows as h decreases. 
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Remark 1. We want to compare our ideas with those of Engquist and Majda. 
In [4] these authors treat our problem for the special case of a half-space, that is, 

utt = uxx + uyy in x>O 

with r: x = 0. Then they choose for r1 a line x = L. In this case the calculation of 
& in (5.6) is facilitated by taking a Fourier transform with respect to y. If C(x, s, 09) 
is the transform with respect to t and y then they find 

iqL, s, 0) = (2 -coy ii(L, s, 0). 

Their procedure is to expand (s* - o ) * ‘I2 by using Pade approximations and then 
translate the results back to t, x, y space, thus c’rtaining a sequence of approximate 
problems. For n = - 1, 0, and 1 our resu!ts in (5.14), with K z 0, agree with theirs. 
In [4] they consider a more general r but take rl to be a circle. Again our results 
for n = - 1,0 and 1 agree with theirs. It is not clear how they would proceed to get 
higher order terms in this case. 

If we were to continue our process in the half-space case, our results would not 
agree with those in [4]. In fact what we would get would be the result of expanding 
($ - oy using Taylor series and as Engquist and Majda point out these lead to 
ill-posed problems. We do not know if the device indicated in Section 2 for higher 
order approximations can be used to stabilize the higher order results here, at least 
on the finite element spaces. 

Remark 2. For the special case in which l-i is a circle our results can also be 
compared to those of Bayliss and Turkel [Z]. The procedure in [2] is obtained by 
using a far-field expansion from scattering theory and is designed to produce a 
sequence of approximate boundary conditions having the property that they 
from the exact condition by a term which is O(R-“- ‘), R the radius of rr. It is not 
difficult to see that, for a circle, our procedure has the property that the kth term 
in (5.13) is O(RP) so it has the same property as that in [2]. This means that for 
any approximation 9n with ~12 1 one can expect to make the errors go to zero by 
choosing R large, but, without some modification, not uniformly in time. 
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